Streaming Algorithms: Data without a disk

H. Andrew Schwartz

CSE545 Spring 2020

Big Data Analytics, The Class

Goal: Generalizations A *model* or *summarization* of the data.

Data Frameworks

Algorithms and Analyses

Hadoop File System

Streaming

MapReduce

Tensorflow

Spark

Similarity Search Hypothesis Testing Graph Analysis Recommendation Systems

Deep Learning

What is Streaming?

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")

Examples: Google search queries

Satellite imagery data

Text Messages, Status updates

Click Streams

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")

(2) **Indirect:** The constraints for streaming data force one to solutions that are often efficient even when storing data. *Streaming Approx Random Sample*

Distributed IO (MapReduce, Spark)

Often translates into O(N) or strictly N algorithms.

(2) **Indirect:** The constraints for streaming data force one to solutions that are often efficient even when storing data. *Streaming Approx Random Sample*

Distributed IO (MapReduce, Spark)

Streaming Topics

- General Stream Processing Model
- Sampling
- Counting Distinct Elements
- Filtering data according to a criteria

E.g. How would you handle:

What is the mean of values seen so far?

Important difference from typical database management:

- Input is not controlled by system staff.
- Input timing/rate is often unknown, controlled by users.

E.g. How would you handle: What is the mean of values seen so far?

E.g. How would you handle:

What is the mean of values seen so far?

(Leskovec et al., 2014)

A stream of records (also often referred to as "elements", "tuples", "lines", or "rows") Theoretically, could be anything! search queries, numbers, bits, image files, ...

-- asked at all times.

Sampling: 2 Versions

Create a random sample for statistical analysis.

Sampling: 2 Versions

- 1. Simple Sampling: Individual records are what you wish to sample.
- 2. **Hierarchical Sampling:** Sample an attribute of a record.

Sampling: 2 Versions

Create a random sample for statistical analysis.

- 1. Simple Sampling: Individual records are what you wish to sample.
- 2. **Hierarchical Sampling:** Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

Create a random sample for statistical analysis.

Create a random sample for statistical analysis.

Create a random sample for statistical analysis.

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

```
record = stream.next()
if random() <= .05: #keep: true 5% of the time
    memory.write(record)</pre>
```

Problem: records/rows often are not units-of-analysis for statistical analyses E.g. user ids for searches, tweets; location ids for satellite images

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

record = stream.next()
if random() <= .05: #keep: true 5% of the time
 memory.write(record)</pre>

Solution: ?

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

```
record = stream.next()
if ??: #keep
    memory.write(record)
```


2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

```
record = stream.next()
if ??: #keep:
    memory.write(record)
```

Solution: instead of checking random digit; hash the attribute being sampled.

- streaming: only need to store hash functions; may be part of standing query

2. Hierarchical Sampling: Sample an attribute of a record.

(e.g. records are tweets, but with to sample users)

```
record = stream.next()
if hash(record['user_id']) == 1: #keep
    memory.write(record)
```

Solution: instead of checking random digit; hash the attribute being sampled.

- streaming: only need to store hash functions; may be part of standing query

```
How many buckets to hash into?
```

Streaming Topics

- General Stream Processing Model
- Sampling
- Counting Distinct Elements
- Filtering data according to a criteria

Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is

$$\sum_{i\in \mathrm{Set}}m_i^k$$

Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \text{Set}} m_i^k$

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness;* related to variance)

Counting Moments

Moments:

- Suppose m_i is the count of distinct element i in the data
- The kth main is $\sum_{i \in Set} m_i^k$ Trivial: just increment a counter
 - Oth moment and or arsunct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness;* related to variance)

Counting Momen

distinct words in large document. distinct websites (URLs). users that visit a site without storing. unique queries to Alexa.

0th moment

• 0th moment: count of distinct elements

- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness;* related to variance)

Counting Momer

Applications Counting...

> distinct words in large document. distinct websites (URLs). users that visit a site without storing. unique queries to Alexa.

Oth moment One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can't maintain that many in memory; disk storage is too slow

• 0th moment: count of distinct elements

- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness;* related to variance)

Oth moment Streaming Solution: Flajolet-Martin Algorithm General idea: n -- suspected total number of elements observed pick a hash, *h*, to map each element to log₂n bits (buckets)

Znu moment. Sum of squares

Oth moment
Streaming Solution: Flajolet-Martin Algorithm
General idea:
 n -- suspected total number of elements observed
 pick a hash, h, to map each element to log₂n bits (buckets)

 R = 0 #current max number of zeros at tail
 for each stream element, e:
 r(e) = trailZeros(h(e)) #num of trailing 0s from h(e)
 R = r(e) if r[e] > R

 $estimated_distinct_elements = 2^{R}$

Zna moment. Sum of squares

Counting Momer

0th moment Streaming Solution: Flajolet-Martin General idea:

n -- suspected total number of C If $2^{\kappa} <<$ pick a hash, *h*, to map each element α

R = 0 #current max number of ze
for each stream element, e:
 r(e) = trailZeros(h(e)) #nu
 R = r(e) if r[e] > R

Mathematical Intuition

P(trailZeros(h(e)) >= i) = 2⁻ⁱ #P(h(e) == __0) = .5; P(h(e) == __00) = .25; ... P(trailZeros(h(e)) < i) = 1 - 2⁻ⁱ for m elements: = $(1 - 2^{-i})^m$ P(one e has trailZeros > i) = 1 - $(1 - 2^{-i})^m$ $\approx 1 - e^{-m2^{-i}}$

eral idea: If $2^{\mathbb{R}} \ge m$, then $1 - (1 - 2^{-i})^m \approx 0$ n -- suspected total number of $1^{\mathbb{R}} \le m$, then $1 - (1 - 2^{-i})^m \approx 1$

(DUCKEIS)

tail

trailing 0s from h(e)

estimated_distinct_elements = $2^{R} \# m$

Zna moment. sum or squares

Counting Momer

Oth moment Streaming Solution: Flajolet-Martin General idea:

> n -- suspected total number of $\sqrt{112^{R}} << m$, then 1 - $(1 - 2^{-i})^{m} \approx 1$ pick a hash, h, to map each element it

R = 0 #current max number of ze for each stream element, e: r(e) = trailZeros(h(e)) #nuR = r(e) if r[e] > R

estimated_distinct_elements = 2^{R}

Zhu moment. Sum of Squares

Mathematical Intuition

 $P(trailZeros(h(e)) >= i) = 2^{-i}$ # P(h(e) == 0) = .5; P(h(e) == 00) = .25; ... $P(trailZeros(h(e)) < i) = 1 - 2^{-i}$ **for m elements:** $= (1 - 2^{-i})^m$ P(one e has trailZeros > i) = $1 - (1 - 2^{-i})^m$ ≈ 1 - e^{-m2^-i} If $2^{R} >> m$, then 1 - $(1 - 2^{-i})^{m} \approx 0$

(DUCKEIS)

Problem: Unstable in practice.

Solution:

Multiple hash functions but how to combine?

Oth moment Streaming Solution: Flajolet-Martin Algorithm General idea:

pick a hash, h, to map each element to l

Rs = list()

Problem: Unstable in practice.

Solution: Multiple hash functions n -- suspected total number of elements 1. Partition into groups of size log n

2. Take mean in groups 3. Take median of group means

for *h* in hashes: R = 0 #potential max number of zeros at tail for each stream element, e: r(e) = trailZeros(h(e)) #num of trailing 0s from h(e) R = r(e) if r[e] > RRs.append(2^{R})

groupRs = [Rs[i:i+log n] for i in range(0, len(Rs), log n)]

estimated distinct elements = median(map(mean, groupRs))

Oth moment Streaming Solution: Flajolet-Martin Algorithm General idea:

n -- suspected total number of elements pick a hash, *h*, to map each element to le

Rs = list()
for h in hashes:

R = 0

A good approach anytime one has many "low resolution" estimates of a true value.

Rs.app

Problem: Unstable in practice.

Solution: Multiple hash functions1. Partition into groups of size log n2. Take mean in groups3. Take median of group means

ros at tail

lling Os from h(e)

groupRs = [Rs[i:i+log n] for i in range(0, len(Rs), log n)]

estimated_distinct_elements = median(map(mean, groupRs))

2nd moment Streaming Solution: Alon-Matias-Szegedy Algorithm

(Exercise; Out of Scope; see in MMDS)

- 0th moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures *uneveness* related to variance)

standard deviation

$$s = \frac{1}{N} \sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2}$$

standard deviation

$$s = \frac{1}{N} \sqrt{\sum_{1}^{N} (x_i - \bar{x})^2} = \sqrt{(\bar{x^2}) - \bar{x}^2} = \sqrt{\frac{\sum x^2}{N} - \left(\frac{\sum x}{N}\right)^2}$$

standard deviation

$$s = \frac{1}{N} \sqrt{\sum_{1}^{N} (x_i - \bar{x})^2} = \sqrt{(\bar{x^2}) - \bar{x}^2} = \sqrt{\sum_{N=1}^{N} x^2} - \left(\sum_{N=1}^{N} x\right)^2}$$
For streaming, just need to store
(1) number of elements, (2) sum of
elements, and (3) sum of squares.

standard deviation

$$s = \frac{1}{N} \sqrt{\sum_{1}^{N} (x_i - \bar{x})^2} = \sqrt{(\bar{x^2}) - \bar{x}^2} = \sqrt{\sum_{N=1}^{N} (x_i - \bar{x})^2} = \sqrt{(\bar{x^2})^2 - (\bar{x^2})^2}$$

However, challenge:
Sum of squares can blow up!
For streaming, just need to store
(1) number of elements, (2) sum of
elements, and (3) sum of squares.

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows *false positives but not false negatives*)

Given:

|S| keys to filter; will be mapped to |B| bits hashes = $h_{1,} h_{2'} \dots h_{k}$ independent hash functions

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)

<u>Given:</u>

```
|S| keys to filter; will be mapped to |B| bits
hashes = h_{1,} h_{2'} \dots h_{k} independent hash functions
```

<u>Algorithm:</u>

```
set all B to 0 #B is a bit vector
for each i in hashes, for each s in S:
   set B[h<sub>i</sub>(s)] = 1 #all bits resulting from
```

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)

<u>Given:</u>

```
|S| keys to filter; will be mapped to |B| bits
    hashes = h_1 h_2, ..., h_k independent hash functions
Algorithm:
    set all B to 0 #B is a bit vector
    for each i in hashes, for each s in S:
      set B[h<sub>i</sub>(s)] = 1 #all bits resulting from
      ... #usually embedded in other code
    while key x arrives next in stream #filter:
      if B[h_i(x)] == 1 for all i in hashes:
        #do as if x is in S
      else: #do as if x not in S
```

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows false positives but not false negatives)

Setup filter

Apply Filter

<u>Given:</u>

```
|S| keys to filter; will be mapped to |B| bits
    hashes = h_1, h_2, ..., h_k independent hash functions
Algorithm:
    set all B to 0 #B is a bit vector
    for each i in hashes, for each s in S:
      set B[h<sub>i</sub>(s)] = 1 #all bits resulting from
      ... #usually embedded in other code
    while key x arrives next in stream #filter:
      if B[h_i(x)] == 1 for all i in hashes:
        #do as if x is in S
      else: #do as if x not in S
```

Filtering: Select elements with property x

Example: 40B safe email addresses for spam filter

The Bloom Filter (approximates; allows FPs)

<u>Given:</u>

|S| keys to filter; will be mapped to |B| bits
hashes = h₁, h₂, ..., h_k independent hash functions
Algorithm:
set all B to 0
for each i in hashes, for each s in S:
set B[h_i(s)] = 1
... #usually embedded in other code
while key x arrives next in stream #filter:
if B[h_i(x)] == 1 for all i in hashes:
 #do as if x is in S

else: #do as if x not in S

What is the probability of a *false positive (FP)*?

Q: What fraction of |B| are 1s?

Filtering: Select elements with property x Example: 40B safe email addresses for spam filter The Bloom Filter (approximates; allows *FPs*)

Given:

|S| keys to filter; will be mapped to |B| bits hashes = $h_{1,} h_{2'} \dots h_k$ independent hash functions Algorithm:

```
set all B to 0
for each i in hashes, for each s in S:
   set B[h<sub>i</sub>(s)] = 1
   ... #usually embedded in other code
while key x arrives next in stream #filter:
   if B[h<sub>i</sub>(x)] == 1 for all i in hashes:
     #do as if x is in S
   else: #do as if x not in S
```

What is the probability of a *false positive*?

Q: What fraction of |B| are 1s?

```
A: Analogy:

Throw |S| * k darts at n targets.

1 dart: 1/n

d darts: (1 - 1/n)^d = prob of 0

= e^{-d/n} are 0s
```

Filtering: Select elements with property x Example: 40B safe email addresses for spam filter The Bloom Filter (approximates; allows *FPs*)

<u>Given:</u>

|S| keys to filter; will be mapped to |B| bits hashes = $h_{1,} h_{2'} \dots h_k$ independent hash functions **Algorithm:**

```
set all B to 0
for each i in hashes, for each s in S:
    set B[h<sub>i</sub>(s)] = 1
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h<sub>i</sub>(x)] == 1 for all i in hashes:
        #do as if x is in S
    else: #do as if x not in S
```

What is the probability of a *false positive*?

Q: What fraction of |B| are 1s?

```
A: Analogy:

Throw |S| * k darts at n targets.

1 dart: 1/n

d darts: (1 - 1/n)^d = prob of 0

= e^{-d/n} are 0s

= e^{-1}

for large n
```

Filtering: Select elements with property x Example: 40B safe email addresses for spam filter The Bloom Filter (approximates; allows *FPs*)

<u>Given:</u>

|S| keys to filter; will be mapped to |B| bits hashes = $h_{1,} h_{2'} \dots h_k$ independent hash functions **Algorithm:**

```
set all B to 0
for each i in hashes, for each s in S:
    set B[h<sub>i</sub>(s)] = 1
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h<sub>i</sub>(x)] == 1 for all i in hashes:
        #do as if x is in S
    else: #do as if x not in S
```

What is the probability of a *false positive*?

Q: What fraction of |B| are 1s?

```
A: Analogy:

Throw |S| * k darts at n targets.

1 dart: 1/n

d darts: (1 - 1/n)^d = prob of 0

= e^{-d/n} are 0s
```

```
thus, (1 - e<sup>-d/n</sup>) are 1s
```

probability all k being 1?

Filtering: Select elements with property x Example: 40B safe email addresses for spam filter The Bloom Filter (approximates; allows *FPs*)

<u>Given:</u>

|S| keys to filter; will be mapped to |B| bits hashes = $h_{1,} h_{2'} \dots h_k$ independent hash functions **Algorithm:**

```
set all B to 0
for each i in hashes, for each s in S:
    set B[h<sub>i</sub>(s)] = 1
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h<sub>i</sub>(x)] == 1 for all i in hashes:
        #do as if x is in S
    else: #do as if x not in S
```

What is the probability of a *false positive*?

Q: What fraction of |B| are 1s?

```
A: Analogy:

Throw |S| * k darts at n targets.

1 dart: 1/n

d darts: (1 - 1/n)^d = prob of 0

= e^{-d/n} are 0s
```

```
thus, (1 - e<sup>-d/n</sup>) are 1s
```

probability all *k* being 1? (1 - e^{-(|S|*k)/n})^k

Note: Can expand S as stream continues as long as |B| has room (e.g. adding verified email addresses)

(Leskovec et al., 2014)

Streaming Topics

- General Stream Processing Model
- Sampling
 - approx. random
 - hierarchical approx. random
- Counting Elements
 - distinct elements
 - mean, standard deviation
- Filtering data according to a criteria
 - bloom filter setup + application
 - calculating false positives