Streaming Algorithms: Data without a disk

H. Andrew Schwartz

CSE545
Spring 2020

Big Data Analytics, The Class

Goal: Generalizations A model or summarization of the data.

Data Frameworks

Hadoop File System
Streaming MapReduce Tensorflow

Algorithms and Analyses

Similarity Search Graph Analysis

Recommendation Systems
Deep Learning

What is Streaming?

Broadly:

Why Streaming?

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")

Why Streaming?

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")

Examples: Google search queries
Satellite imagery data
Text Messages, Status updates
Click Streams

Why Streaming?

(1) Direct: Often, data ...

- ... cannot be stored (too big, privacy concerns)
- ... are not practical to access repeatedly (reading is too long)
- ... are rapidly arriving (need rapidly updated "results")
(2) Indirect: The constraints for streaming data force one to solutions that are often efficient even when storing data.

Streaming Approx Random Sample
Distributed IO (MapReduce, Spark)

Why Streaming?

Often translates into $O(N)$ or strictly N algorithms.

(2) Indirect: The constraints for streaming data force one to solutions that are often efficient even when storing data. Streaming Approx Random Sample

> Distributed IO (MapReduce, Spark)

Streaming Topics

- General Stream Processing Model
- Sampling
- Counting Distinct Elements
- Filtering data according to a criteria

RECORD IN

Process
 for

RECORD GONE

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts /
summaries of streams

RECORD IN

Process
 for

RECORD GONE

Standing Queries:
Stored and permanently executing.

Ad-Hoc:
One-time questions
-- must store expected parts / summaries of streams
E.g. How would you handle:

What is the mean of values seen so far?

RECORD IN

Process
 for

 RECORD GONEImportant difference from typical database management:

- Input is not controlled by system staff.
- Input timing/rate is often unknown, controlled by users.
E.g. How would you handle:

What is the mean of values seen so far?

> E.g. How would you handle: $$
\text { What is the mean of values seen so far? }
$$

General Stream Processing Model

(Leskovec et al., 2014)

General Stream Processing Model

Sampling

Create a random sample for statistical analysis.

Sampling

Create a random sample for statistical analysis.

Sampling

Create a random sample for statistical analysis.

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.
2. Hierarchical Sampling: Sample an attribute of a record.
(e.g. records are tweets, but with to sample users)

Sampling: 2 Versions

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.
2. Hierarchical Sampling: Sample an attribute of a record.
(e.g. records are tweets, but with to sample users)

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.
record = stream.next()
if ?: \#keep: e.g., true 5\% of the time memory.write(record)

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.
record $=$ stream.next()
if random() <= . 05 : \#keep: true 5\% of the time memory.write(record)

Sampling

Create a random sample for statistical analysis.

1. Simple Sampling: Individual records are what you wish to sample.
record $=$ stream.next()
if random() <= .05: \#keep: true 5\% of the time memory.write(record)

Problem: records/rows often are not units-of-analysis for statistical analyses
E.g. user_ids for searches, tweets; location_ids for satellite images

Sampling

2. Hierarchical Sampling: Sample an attribute of a record. (e.g. records are tweets, but with to sample users) record = stream.next() if random() <= .05: \#keep: true 5\% of the time memory.write(record)

Solution: ?

Sampling

2. Hierarchical Sampling: Sample an attribute of a record.
(e.g. records are tweets, but with to sample users)
```
record = stream.next()
```

if ??: \#keep
memory.write(record)

Solution: ?

Sampling

2. Hierarchical Sampling: Sample an attribute of a record.
(e.g. records are tweets, but with to sample users)
record = stream.next()
if ??: \#keep:
memory.write(record)
Solution: instead of checking random digit; hash the attribute being sampled.

- streaming: only need to store hash functions; may be part of standing query

Sampling

2. Hierarchical Sampling: Sample an attribute of a record.
(e.g. records are tweets, but with to sample users)
record = stream.next()
if hash(record['user_id’]) == 1: \#keep
memory.write(record)

Solution: instead of checking random digit; hash the attribute being sampled.

- streaming: only need to store hash functions; may be part of standing query

How many buckets to hash into?

Streaming Topics

- General Stream Processing Model
- Sampling
- Counting Distinct Elements
- Filtering data according to a criteria

Counting Moments

Moments:

- Suppose m_{i} is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \text { Set }} m_{i}^{k}$

Counting Moments

Moments:

- Suppose m_{i} is the count of distinct element i in the data
- The kth moment of the stream is $\sum_{i \in \operatorname{Set}} m_{i}^{k}$
- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

Moments:

- Suppose m_{i} is the count of distinct element i in the data
- The kth Trivial: just increment a counter
- Oth momen ameoriounct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Momen Ampicisions
 Counting.

distinct words in large document.
distinct websites (URLs).
users that visit a site without storing.
0th moment unique queries to Alexa.

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Momer

Applications
distinct words in large document. distinct websites (URLs).
users that visit a site without storing. unique queries to Alexa.
Oth moment
One Solution: Just keep a set (hashmap, dictionary, heap)

Problem: Can't maintain that many in memory; disk storage is too slow

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares
(measures uneveness; related to variance)

Counting Moments

Oth moment

Streaming Solution: Flajolet-Martin Algorithm General idea:
n -- suspected total number of elements observed pick a hash, h, to map each element to $\log _{2} n$ bits (buckets)

Counting Moments

Oth moment

Streaming Solution: Flajolet-Martin Algorithm
General idea:
n -- suspected total number of elements observed pick a hash, h, to map each element to $\log _{2} n$ bits (buckets)
$\mathrm{R}=0$ \#current max number of zeros at tail
for each stream element, e:
$r(e)=$ trailZeros(h(e)) \#num of trailing 0s from $h(e)$
$R=r(e)$ if $r[e]>R$
estimated_distinct_elements = $2^{\text {R }}$

(measures uneveness; related to variance)

Counting Momer

Mathematical Intuition

$P($ trailZeros $(h(e))>=i)=2^{-i}$ $\# P\left(h(e)==_0\right)=.5 ; P\left(h(e)==_00\right)=.25 ;$ $\mathrm{P}($ trailZeros $(h(e))<i)=1-2^{-i}$ for m elements: $=\left(1-2^{-i}\right)^{m}$

Oth moment

$\mathrm{P}($ one e has trailZeros $>\mathrm{i})=1-\left(1-2^{-i}\right)^{m}$ $\approx 1-\mathrm{e}^{-\mathrm{m} 2^{2}-i}$
Streaming Solution: Flajolet-Martin General idea:

If $2^{R} \gg m$, then $1-\left(1-2^{-i}\right)^{m} \approx 0$
n -- suspected total number of If $2^{R} \ll \mathrm{~m}$, then $1-\left(1-2^{-i}\right)^{m} \approx 1$ pick a hash, h, to map each elementit

R = 0 \#current max number of ze for each stream element, e : $r(e)=$ trailZeros(h(e)) \#nu $R=r(e)$ if $r[e]>R$

```
estimated_distinct_elements = 2 R # m
```

zinu moinient. sumiol squares
(measures uneveness; related to variance)

Counting Mome

Mathematical Intuition

$$
\begin{gathered}
\mathrm{P}(\text { trailZeros }(h(e))>=i)=2^{-i} \\
\# P(h(e)==-0)=.5 ; P(h(e)==-00)=.25 ; \ldots \\
\mathrm{P}(\text { trailZeros }(h(e))<i)=1-2^{-i} \\
\text { for m elements: }=\left(1-2^{-i}\right)^{m} \\
\begin{aligned}
& \mathrm{P}(\text { one } e \text { has trailZeros }>\mathrm{i})=1-\left(1-2^{-i}\right)^{m} \\
& \approx 1-\mathrm{e}^{-m 2^{\wedge-i}} \\
& \text { If } 2^{\mathrm{R}} \gg \mathrm{~m} \text {, then } 1-\left(1-2^{-i}\right)^{m} \approx 0
\end{aligned}
\end{gathered}
$$

Oth moment

Streaming Solution: Flajolet-Martin General idea:
n -- suspected total number of If $2^{R} \ll \mathrm{~m}$, then $1-\left(1-2^{-i}\right)^{m} \approx 1$ pick a hash, h, to map each elementit
$\mathrm{R}=0$ \#current max number of ze for each stream element, e :
$r(e)=$ trailZeros(h(e)) \#nu $R=r(e)$ if $r[e]>R$

$$
\text { estimated_distinct_elements }=2^{R}
$$

Problem:
Unstable in practice.
Solution:
Multiple hash functions but how to combine?

ZIU IIIOIIIEIIL. SUIIIUOI Squales
(measures uneveness; related to variance)

Oth moment

Streaming Solution: Flajolet-Martin Algorithm General idea:
n -- suspected total number of elements pick a hash, h, to map each element to I

Rs = list()
for h in hashes:
$\mathrm{R}=0$ \#potential max number of zeros at tail
for each stream element, e :
$r(e)=$ trailZeros(h(e)) \#num of trailing 0s from $h(e)$ $\mathrm{R}=\mathrm{r}(e)$ if $\mathrm{r}[e]>\mathrm{R}$
Rs.append(2^{R})
groupRs $=[\operatorname{Rs}[i: i+\log n]$ for i in range(0 , $\operatorname{len}(R s), \log n)]$
estimated_distinct_elements = median(map(mean, groupRs))

Oth moment

Streaming Solution: Flajolet-Martin Algorithm General idea:
n -- suspected total number of elements pick a hash, h, to map each element to I

Rs = list()
for h in hashes:

$$
\mathrm{R}=0
$$

fo A good approach anytime one has many "low resolution" Ling 0s from $h(e)$ estimates of a true value.
groupRs $=[\operatorname{Rs}[i: i+l o g n]$ for i in range(0, len(Rs), log $n)]$
estimated_distinct_elements = median(map(mean, groupRs))

Counting Moments

2nd moment

Streaming Solution: Alon-Matias-Szegedy Algorithm
(Exercise; Out of Scope; see in MMDS)

- Oth moment: count of distinct elements
- 1st moment: length of stream
- 2nd moment: sum of squares (measures uneveness related to variance)

Counting Moments

standard deviation
(variance squared for numeric data)
$s=\frac{1}{N} \sqrt{\sum_{1}^{N}\left(x_{i}-\bar{x}\right)^{2}}$

Counting Moments

standard deviation

(variance squared for numeric data)
$s=\frac{1}{N} \sqrt{\sum_{1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\left(\overline{x^{2}}\right)-\bar{x}^{2}}=\sqrt{\frac{\sum x^{2}}{N}-\left(\frac{\sum x}{N}\right)^{2}}$

Counting Moments

standard deviation

(variance squared for numeric data)

$$
\begin{aligned}
s=\frac{1}{N} \sqrt{\sum_{1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\left(\bar{x}^{2}\right)-\bar{x}^{2}}=\sqrt{\frac{\sum^{2}}{N}} \\
\begin{array}{l}
\text { For streaming, just need to store } \\
\text { (1) number of elements, (2) sum of } \\
\text { elements, and (3) sum of squares. }
\end{array}
\end{aligned}
$$

Counting Moments

standard deviation

 (variance squared for numeric data)$$
s=\frac{1}{N} \sqrt{\sum_{1}^{N}\left(x_{i}-\bar{x}\right)^{2}}=\sqrt{\left(\overline{x^{2}}\right)-\bar{x}^{2}}=\sqrt{\frac{\sum x^{2}}{N}-\left(\frac{\sum x}{x}\right)^{2}}
$$

However, challenge:

Sum of squares can blow up!
For streaming, just need to store (1) number of elements, (2) sum of elements, and (3) sum of squares.

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:

|S| keys to filter; will be mapped to |B| bits
hashes $=h_{1,} h_{2}, \ldots, h_{k}$ independent hash functions

Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:

$|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits
hashes $=h_{1,} h_{2}, \ldots, h_{k}$ independent hash functions

Algorithm:

```
set all B to 0 #B is a bit vector
for each i in hashes, for each s in S:
    set }\textrm{B}[\mp@subsup{h}{i}{}(s)]=1 #all bits resulting fro
```


Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:

$|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions

Algorithm:

```
set all B to 0 #B is a bit vector
for each i in hashes, for each s in S:
    set B[h(s)] = 1 #all bits resulting from
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h
        #do as if x is in S
    else: #do as if x not in S
```


Filtering Data

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows false positives but not false negatives)

Given:

$|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions

Algorithm:

Filtering Data

What is the probability of a false positive (FP)?

Q: What fraction of $|\mathrm{B}|$ are 1 s ?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:

$|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions

Algorithm:

```
set all B to 0
for each i in hashes, for each s in S:
    set }\textrm{B}[\mp@subsup{h}{i}{}(\textrm{s})]=
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[hi}(x)]==1 for all i in hashes
        #do as if x is in S
    else: #do as if x not in S
```


Filtering Data

What is the probability of a false positive?

Q: What fraction of $|\mathrm{B}|$ are 1s?
A: Analogy:
Throw |S| * k darts at n targets. 1 dart: $1 / n$
d darts: $(1-1 / n)^{d}=$ prob of 0

$$
=e^{-d / n} \text { are 0s }
$$

Algorithm:

```
set all B to 0
for each i in hashes, for each s in S:
    set }\textrm{B}[\mp@subsup{h}{i}{}(\textrm{s})]=
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[hi}(\textrm{x})]==1 for all i in hashes
        #do as if x is in S
    else: #do as if x not in S
```


Filtering Data

What is the probability of a false positive?

Q: What fraction of $|\mathrm{B}|$ are 1s?
A: Analogy:
Throw |S| * k darts at n targets. 1 dart: $1 / n$
d darts: $(1-1 / n)^{d}=$ prob of 0

$$
=e^{-d / n} \text { are 0s }
$$

$$
=e^{-1}
$$

for large n

```
set all B to 0
for each i in hashes, for each s in S:
        set B[h (s)] = 1
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h
        #do as if x is in S
    else: #do as if x not in S
```


Filtering Data

What is the probability of a false positive?

Q: What fraction of $|\mathrm{B}|$ are 1s?
A: Analogy:
Throw |S| * k darts at n targets. 1 dart: $1 / n$
d darts: $(1-1 / n)^{d}=$ prob of 0

$$
=e^{-d / n} \text { are 0s }
$$

thus, $\left(1-e^{-d / n}\right)$ are 1s
probability all k being 1 ?

```
set all B to 0
for each i in hashes, for each s in S:
    set }\textrm{B}[\mp@subsup{h}{i}{}(\textrm{s})]=
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[h
        #do as if x is in S
    else: #do as if x not in S
```


Filtering Data

What is the probability of a false positive?

Filtering: Select elements with property x
Example: 40B safe email addresses for spam filter
The Bloom Filter (approximates; allows FPs)

Given:

$|S|$ keys to filter; will be mapped to $|\mathrm{B}|$ bits hashes $=h_{1}, h_{2}, \ldots, h_{k}$ independent hash functions

Algorithm:

```
set all B to 0
for each i in hashes, for each s in S:
    set B[h(s)] = 1
    ... #usually embedded in other code
while key x arrives next in stream #filter:
    if B[hi}(x)]==1 for all i in hashes
        #do as if x is in S
    else: #do as if x not in S
```

Q: What fraction of $|\mathrm{B}|$ are 1s?

A: Analogy:

Throw |S| * k darts at n targets. 1 dart: $1 / n$
d darts: $(1-1 / n)^{d}=$ prob of 0

$$
=e^{-d / n} \text { are 0s }
$$

thus, $\left(1-e^{-d / n}\right)$ are 1s
probability all k being 1 ?
$\left(1-e^{-\left(|S|^{*} k\right) / n}\right)^{k}$
Note: Can expand S as stream continues as long as |B| has room (e.g. adding verified email addresses)

Streaming Topics

- General Stream Processing Model
- Sampling
- approx. random
- hierarchical approx. random
- Counting Elements
- distinct elements
- mean, standard deviation
- Filtering data according to a criteria
- bloom filter setup + application
- calculating false positives

